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ABSTRACT
An assessment methodology is described and illustrated.
This methodology separates assessment into the following
phases (1) Elicitation of requirements; (2) Elicitation of
failure modes and their impact (risk of loss of
requirements); (3) Elicitation of failure mode mitigations
and their effectiveness (degree of reduction of failure
modes); (4) Calculation of outstanding risk taking the
mitigations into account.

This methodology, with accompanying tool support, has
been applied to assist in planning the engineering
development of advanced technologies. Design assessment
featured prominently in these applications. The overall
approach is also applicable to development assessment (of
the development process to be followed to implement the
design).

Both design and development assessments are
demonstrated on hypothetical scenarios based on the
workshop’s TRMCS case study. TRMCS information has
been entered into the assessment support tool, and serves as
illustration throughout.
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1. INTRODUCTION
In complex and critical systems, assessments are a means to
determine adequacy of designs to meet their requirements,
and the adequacy of development plans to satisfactorily
implement designs.

This paper outlines a methodology to performing detailed
and quantitative assessments of system designs and of
software development plans. The key components to this
methodology are the notions of Requirements (what it is
that the system is supposed to achieve), Failure Modes
(things that, should they occur, will lead to loss of
requirements) and Mitigations (design components,
activities, etc., that reduce the risk of requirements loss
incurred by Failure Modes). The methodology advocates
the disciplined approach to elicitation of each of these,
culminating in the calculation of outstanding risk taking the
mitigations into account.

This approach to assessment is based upon a broader
methodology for spacecraft mission assurance and
planning, called Defect Detection and Prevention (DDP)
[Cornford, 1998]. A computerized tool supports the real-
time application of DDP. The DDP tool represents the
elicited information, computes derived information (e.g.,
aggregate risk), and graphically displays information. The
DDP tool is designed to offer modest capabilities in all
these areas. It emphasizes tight coordination between its
various capabilities, which accounts for its capacity to
enable users to work effectively within a large space of
information, discussed further in [Feather et al, 2000].

The rest of this paper is organized as follows:

The major phases of design assessment are covered first:
requirements elicitation (Section 2), failure modes
elicitation (Section 3), mitigations elicitation (Section 4),
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and assessment calculation (Section 5). For each, the
methodology and tool support is described and illustrated
on hypothetical scenarios within the TRMCS domain.
Since the authors are by no means experts in this domain, it
should be understood that the purpose of these scenarios is
to illustrate the potential of the assessment methodology.
Development assessment is considered next (Section 6).
Conclusions follow (Section 8), and finally some further
illustrations of development assessment in the TRMCS
application are in an appendix.

2. REQUIREMENTS ELICITATION
Requirements elicitation is the first step to performing an
assessment. The system’s design will be measured against
those requirements.

Requirements Elicitation - Methodology
The assessment process must establish the system’s
requirements, and their relative importance. All the key
stakeholders must contribute to this activity, in order that
no critical requirement is accidentally overlooked. Since
not all requirements will be equally important, they must be
weighted relative to one another. This will likely need the
simultaneous involvement of experts from multiple
disciplines. It is important that this establishing of the
relative importance of the requirements not be biased by
knowledge of the ease or difficulty of the achievement
within a given design or approach.

Requirements elicitation is performed in a session at which
all the stakeholders attend. A moderator directs the flow of
conversation, encourages input from all stakeholders, etc.
The DDP tool is used to capture the elicited requirements
and display them for all attendees to see.

The stage at which the assessment takes place bounds the
level of detail to which requirements can be elicited. For
example, only after a detailed design has been formulated
can requirements of the design’s subcomponents be
determined. Furthermore, it is only necessary to elicit
enough detail to be able to conduct the assessment. As a
result, modest capabilities for representing requirements
suffice. These are discussed next.

Requirements Elicitation – Tool Support
The DDP tool offers the following capabilities for
representing and manipulating requirements:

• A pre-determined set of useful attributes for
requirements – e.g., title, reference (the author/source
of the requirement), description (unbounded text field
for length comments), and relative weight. The process
(and tool) make many of the attributes optional, so that
the users can make the choice of when and how much
detail to provide.

• Ability to add/edit/remove requirements on the fly. It is
also possible to turn “on” and “off” individual
requirements.

• Tree-structured organization of requirements,
permitting on-the-fly reorganizations during the
elicitation process. This form of hierarchical grouping
is particularly useful as the number of requirements
grows.

• Bottom-up or top-down computation of requirement
weights. In bottom-up computation, the stakeholders
assign relative weights to the “leaf” requirements,
which are aggregated upwards through the
requirements tree to determine the relative weights of
the parent requirements. Alternately, in top-down
computation, the weight assigned to the topmost
(“root”) node of a requirements tree is distributed to its
child nodes in proportion to their relative weights,
continuing this process recursively down through the
tree.

• A choice of styles for automatic numbering of
requirements. Tree-structured numbering (1, 1.1, 1.2,
…2, …) is the most popular.

Figure 1 shows a snapshot of the tool, displaying the
requirements taken from the TRMCS case study
documentation.

Figure 1 - Requirements and a chart of their weights

For the purposes of illustration, the case study’s “Handle
dynamic changes to the number and location of users” has



been turned into a small tree whose parent node is “Handle
dynamic users”, and whose children are “Changing number
of users” and “Changing location of users”.

Requirement weights are shown pictorially in the bar chart,
and the stakeholders’ assigned weights are shown in the
boxes to the left of the tree. The effect of bottom-up
computation of requirements is discernable in the weight of
requirement 9. It’s weight, 8, is the sum of the weights
assigned to its two children, and its background is
automatically shaded to indicate that it is calculated, and
therefore not directly editable.

3. FAILURE MODES ELICITATION
The second major step of the assessment process is the
elicitation of failure modes – all the things that, should they
occur, will lead to loss of requirements. This step also
includes the determination of how much each failure mode
impacts each requirement. For example, a power outage at
the TRMCS center would adversely impact the “Guarantee
of continuous service” requirement (and others) if nothing
were done to compensate for it.

Failure Modes Elicitation - Methodology
As was the case for requirements, all the stakeholders
should contribute to the activity of eliciting failure modes,
in order that no critical failure mode is overlooked.
However, determination of how much each failure mode
impacts each requirement need not necessarily involve all
the stakeholders simultaneously. Instead, it is typical that
failure modes can be subdivided into major disciplines,
and, for a given discipline, only the experts in that
discipline need be involved in determining the impacts of
its failure modes.

Failure modes include both external events (e.g., lightning
strikes, power failures) and internal events (e.g., failure
caused by a bug in the system’s software). This phase of
the assessment process determines the likelihood and
impact of failure modes as if nothing were done to inhibit
their occurrence or reduce their impact. Mitigation of
failure modes, by good design choices and by following
good design methodologies, will be taken into account in
subsequent stages of the assessment process.

We have postulated 11 major failure modes – see Figure 2.
Some are consequences of external events, for example
number 1, “Power outage at center.” Some may be caused
by events internal to the system, for example if the design
includes its own communication system over which the
TRMCS system will operate, then its own failure would
cause number 9, “Communications system down”. Some
may be combinations of both, for example if the TRMCS
deploys its own monitors that communicate using an
existing paging network, then in concert these may lead to
number 9, “Rudimentary connectivity from/to user.”

Figure 2 – hypothesized Failure Modes

Failure Modes Elicitation – Tool Support
The DDP tool’s support for representation and elicitation of
failure modes is similar to that for requirements. Failure
Modes have many of the same attributes; they can be
organized into trees, etc. A Failure Mode does not have a
weight (an attribute specific to requirements), but does
have an a-priori likelihood (an attribute specific to Failure
Modes).

A Failure Mode may have a different impact on different
requirements. Thus impact is not an attribute of a Failure
Mode alone, but is an attribute of a Failure Mode x
Requirement pair. The DDP tool uses a matrix as the
primary means to allow the entering/editing/inspecting of
impacts. The rows of this matrix are Requirements, and the
columns Failure Modes. Each inner cell holds the impact
value of the cell’s column’s Failure Mode on the cell’s
row’s Requirement. An impact value is a number in the
range 0 to 1, where 0 corresponds to no impact whatsoever,
and 1 corresponds to complete loss of the Requirement
should the Failure Mode occur. An empty cell is equivalent
to an entry of 0.

Figure 3 shows some hypothesized impact values for the
previously listed Failure Modes on the TRMCS
requirements. For example, the first row and column
(shown highlighted) correspond to the Requirement “Allow
issuing of help requests” and Failure Mode “Power outage
at center”. The inner cell holds the value 1, indicating that a
power failure will lead to complete loss of ability to issue
help request. This is plausible, since the system at the
center would presumably be rendered inoperable by the
power failure if nothing were done to mitigate this.

The tool automatically calculates some aggregate values for
impacts. These are shown in the second row from the top,
and third column from the left:

• The row of aggregate values displays, for each Failure
Mode, the total expected risk of that Failure Mode. For
Failure Mode FM, this is computed as:

A-priori-impact(FM) = Likelihood(FM) * (∑ (R ∈
Requirements): Weight(R) * Impact(FM,R))



This gives a measure of the total requirements loss that
each Failure Mode would cause if not mitigated
against.

• The column of aggregate values displays, for each
Requirement, the total expected loss of that
Requirement due to the impact of Failure Modes. For
Requirement R, this is computed as:

A-priori-loss(R) = Weight(R) * (∑ (FM ∈ Failure
Modes): Impact(FM,R) * Likelihood(FM))

This gives a measure of the loss of each requirement
due to all the (unmitigated) Failure Modes.

The tool provides bar-chart displays of these. Figure 4
shows the Failure Modes bar chart.

Note that it is possible for the aggregate loss computed for
a requirement to exceed the original value of the

requirement! For example, requirement number 1, “Allow
issuing of help requests”, was originally weighted at 10,
and yet has an aggregate unmitigated loss computed to be
41. This is because there are multiple ways in which the
requirement may be impacted. Indeed, two of them each
lead to complete loss of that requirement should they occur.
Nevertheless, we have found this to be a useful computed

measure - it indicates just how much reduction of failure
mode impacts remains to be accomplished by mitigations.
In application to spacecraft mission assurance and
planning, we have found that in practice people often
employ sufficient mitigations to achieve some, often most,
of a requirement, or recognize that a requirement is too
expensive to achieve, and remove it entirely (i.e., decrease
their ambitions). Removing requirements is more
appropriate when using this approach for planning than for
assessment.

4. MITIGATIONS ELICITATION
The third step is the elicitation of Mitigations - the actions
being taken to reduce the likelihood and/or impact of
Failure Modes. For example, a design that included a
backup power source at the TRMCS center would mitigate
the “Power outage at center” Failure Mode. This step also
includes the determination of how much each Mitigation
reduces each Failure Mode.

Mitigations Elicitation - Methodology
For assessment purposes, mitigations will be found within
the design, the implementation plan, etc. Personnel
knowledgeable of the design details, implementation plan
details, etc., will need to be involved in this step.

We have postulated 14 mitigations that our hypothetical
TRCMS system employs – see Figure 5. For example,
number 1, “Backup power source at center” suggest a fairly
obvious approach to providing continuity of power. Like
the Failure Modes, these Mitigations are very high-level.
As the design progresses, an assessment at that stage would
determine more detailed and design-specific failure modes
and mitigations.

Figure 3 – Requirements x Failure Modes matrix

Figure 4 –Failure Mode’s A-priori-loss



Figure 5 - Mitigations

Mitigations Elicitation – Tool Support
The DDP tool’s support for representation and elicitation of
Mitigations is similar to that for Requirements and Failure
Modes. Mitigations do not have a weight or likelihood.

In a similar manner to the relationship between Failure
Modes and Requirements, Mitigations can have different
effects on different Failure Modes. The DDP tool maintains
a Mitigation x Failure Mode matrix whose rows are
Mitigations, and columns are Failure Modes. Each cell
holds the effectiveness value of the cell’s row’s Mitigation
on the cell’s column’s Failure Mode. An effectiveness
value is a number in the range 0 to 1, where 0 corresponds
to no effect whatsoever, and 1 corresponds to completely
effective at mitigating the Failure Mode. An empty cell is
equivalent to an entry of 0.

Figure 6 shows the effectiveness matrix for these
Mitigations on the TRMCS Failure Modes. For example,
the first row and column (shown highlighted) correspond to

the Mitigation “Backup power source at center” and Failure
Mode “Power outage at center”. The inner cell holds the
value 0.99, indicating that a backup power source will
almost completely mitigate this Failure Mode. This is
plausible, since there is a small chance that the backup
power source itself might be inoperative when needed, but
generally speaking will be sufficient. Of course, the
determination of its sufficiency will require the judgment of
appropriately skilled personnel, who understand the needs
for, and capabilities of, backup power sources.

The tool automatically calculates some aggregate values for
impacts taking the current set of mitigations into account.
These are shown in the second row from the top, and third
column from the left:

• The row of aggregate values displays, for each Failure
Mode, the total expected risk of that Failure Mode
taking the current set of Mitigations into account. For
Failure Mode FM, this is computed as:

Mitigated-Impact(FM) = A-Priori-Impact(FM) * (1 -
(∏ (M ∈ Mitigations): (1 - Effect(M,FM)))

This gives a measure of the total requirements loss that
each Failure Mode would cause, taking mitigations
into account.

• The column of aggregate values displays, for each
Mitigation, the maximum expected risk savings
application of that Mitigation would achieve. For
Mitigation M, this is computed as:

Mitigation(M) = (∑ (FM ∈ Failure Modes): A-Priori-
Impact(FM) * Effect(M,FM))

This gives a measure of the total benefit that each

Figure 6 – Mitigations x Failure Modes matrix



mitigation provides.

5. ASSESSMENT CALCULATION
Design assessment hinges on estimating how well the
design mitigates the failure modes, and thereby meets the
requirements.

Assessment Calculation – Tool Support
The DDP tool calculates the status of the impacts on
Requirements by Failure Modes, taking into account the
elicited information of Requirements, Failure Modes,
Mitigations and their attributes and relationships. The tool
makes available several visualizations of this information.
For assessment purposes, the key such visualizations are
the Requirements-centric view and the Failure-Modes-
centric view.

Requirements-centric View of Outstanding Risk
Figure 7 shows the chart of the Requirements as impacted
by all of the (completely unmitigated) Failure Modes. The
red portion of the bars indicates loss of Requirements
caused by Failure Modes, while the blue portion indicates
Requirements that are unaffected by Failure Modes. It is
normal for the bars to be mostly or totally red at this point,
so the completely blue bar for Requirement 9.1 suggests
that either it is a trivially satisfied requirement, or, more
likely, that there are as-yet unidentified Failure Modes that
would impact it.

Figure 7 – chart of Requirements, unmitigated

Turning “on” all of our hypothesized mitigations gives the
chart shown in Figure 8. Here, the green portions show the
“savings” due to the Mitigations, and the red portions show
the residual loss-of-Requirements despite the beneficial
effect of the Mitigations. From this chart it is clear that
there is still some significant loss of, especially,
Requirements 1,3, 4 and 6. (Be aware that these are log
scales. This is a heritage of our critical-systems setting,
where we generally seek to push risk down to very low
levels, for which a log scale is better suited.)

Figure 8 – chart of Requirements, fully mitigated

For a design that omitted the two security-related
mitigations (“Encrypted data transmission” and “Passwords
for access to data”), the Requirements chart would be that
shown in Figure 9. Not surprisingly, Requirement 4
“Guarantee secrecy” is now the dominant problem area.
Also, Requirement 11, “Regulations and Standards” has
become more of a concern.

Figure 9 – chart of Requirements, partially mitigated

Failure-Modes-centric View of Outstanding Risk
Figure 10 shows the chart of the Failure Modes and the loss
of requirements that they are causing, with all the
Mitigations turned “on” (i.e., equivalent to Figure 8, but
from the perspective of the Failure Modes).

Figure 10 – chart of Failure Modes, Mitigated

From this chart it is clear that Failure Mode number 10,
“Rudimentary connectivity from/to user” is the most
problematic one for this design.

Assessment Calculation – Methodology
Accuracy of the calculations hinge upon the accuracy of the
numerical quantities entered in the earlier stages. For this



reason, the inclusion of experts whose combined
knowledge spans the entire domain is strongly encouraged.

Even given such involvement, the methodology does not
attempt to yield a single measure of adequacy (e.g.,
tempting though it would be to sum up the un-lost
requirements, the tool does not do this). Rather, the
methodology is aimed at identifying the relative strengths
and weaknesses of a given design. This is a necessary step
in assessing a design, and of considerable assistance to the
assessment team.

6. DEVELOPMENT ASSESSMENT
The discussion and examples so far have illustrated the
assessment of design. We believe a similar approach is
applicable to the assessment of development, i.e., the
process by which the design will be implemented.

We do not yet have realistic project experience to confirm
this belief, so this is a working hypothesis. Within this
section we describe the overall approach and status of our
activities. Detailed examples are deferred to the appendix.

Development Failure Modes
Assessment of software development starts from a standard
list of software development risks. The Software
Engineering Institute (SEI) is one well-respected source of
such information. In particular, the report Software Risk
Evaluation Method [Sisti & Sujoe, 1994] presents a
taxonomy of software risks. These have been encoded as
development Failure Modes within the DDP tool.

Development Mitigations
SEI development practices serve as development
Mitigations. For these, the SEI’s Capability Maturity
Model (CMM) for software [Paulk, et al, 1993] is used.
Each of the five maturity levels (initial, repeatable, defined,
managed, and optimizing) consists of several key process
areas (KPA). For example, the KPAs of level 2 are
requirements management, software project planning,
software project tracking and oversight, software
subcontract management, software quality assurance, and
software configuration management. Each KPA is, in turn,
supported by a few goals and is implemented by a group of
activities. These activities have been encoded as the
available set of Mitigations within the DDP tool.

Interestingly, we did not find any information as to which
KPA activities address which risks, so we made our own
estimate of this. Within the tool, we assigned a non-zero
effectiveness value to every pair of KPA activity and
software risk that we thought were related. At that time, we
used the same non-zero effectiveness value throughout.
[Feather et al, 1999] describes this encoding.

Tailoring through Inclusion of Quantitative
Information
The aforementioned work established a qualitative
framework for development assessment. For tailoring this

to a specific assessment (e.g., of a development plan for a
TRMCS design), quantitative information must be elicited
and incorporated, in the following areas:

• Assigning assessment-specific effectiveness numbers
to the Failure Mode x Mitigation pairs in their matrix.
For example, consider the effect of Mitigation “Project
commitments reviewed by senior management” on
Failure Mode “Insufficient or unstable budget”. If the
development organization plans for recurring senior
management budget reviews, then this will be very
effective, and warrant an effectiveness measure of 0.9,
say.

• Assigning impact values to the Failure Modes (SEI
risks). In our experiments to date, we have simplified
the DDP-based design assessment process. A single
requirement serves as a placeholder for all concerns,
and a loss-of-Requirements impact is assigned directly
to each Failure Mode. For example, knowing that the
TRMCS system will involve development of a critical
communication component, development staff
inexperience in this area might warrant a high impact
measure.

7. CONCLUSIONS
Other work on assessment falls into two broad categories:

• High-level cost/schedule/risk assessment and
management. E.g., the COCOMO work [Clark, B.;
Devnani-Chulani, S.; Boehm, B., 1998]. Risk
management tools are in use to gather and
maintain risk status and tracking, but generally
these tools employ comparatively simple means to
assess the level of risk (e.g., ask an expert to
qualitatively characterize a risk’s likelihood and
severity).

• Very detailed risk assessment. High assurance
system engineering applies intensive assessment
techniques, e.g., probabilistic risk assessment, to
specific designs. E.g., the nuclear power industry
uses these extensively [INSC].

Our approach fills the area in-between. We tailor
assessments to modestly detailed levels of design and
development information. The novelty of our approach
hinges upon a quantitative approach that takes into account
requirements, failure modes, and mitigations. This enables
us to conduct assessments to both design and development
plans. Our assessment calculations yield relative
indications of which requirements are at risk, which Failure
Modes are the most problematic, and which Mitigations are
most critical.
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APPENDIX – DEVELOPMENT ASSESSMENT
Elicitation
Figure 11 shows a portion of the Mitigation x Failure Mode
matrix. The Mitigations are SEI CMM activities, and the
Failure Modes SEI risks. The numerical values in the cells
encode the effectiveness of those Mitigations against the
Failure Modes. For example, the effect of the highlighted
Mitigation “Project commitments reviewed by senior
management” on highlighted Failure Mode “Insufficient or
unstable budget” is set at 0.9. (If the development
organization plans for recurring senior management budget
reviews, then this will be very effective, and warrant such a
high effectiveness measure.)

In a similar manner, quantitative measures of impact are
assigned to each of the Failure Modes. For example,
knowing that the TRMCS system will involve development

of a critical communication component, development staff
inexperience in this area might warrant a high impact
measure of 0.7. See Figure 12.

Assessment
Once the quantitative information has been entered into the
DDP tool, the same capabilities to calculate and display
requirements loss can be employed for assessment
purposes. Figure 13 shows the Failure-Modes-centric view
of Requirements loss, given that all the Mitigations are
“on”. Failure Modes are shown in sorted (decreasing) order
of Requirements loss, so there are many more, of lower
impact, off the right of the image. The same kind of
comparative assessment as was shown on design
information can be performed to development information.
For example, Figure 14 shows the same view when all of
the SEI Software Quality Assurance activities have been

Figure 11

Figure 12



turned “off”. Many of the Failure Modes bars have
increased in height, indicating additional risk.

Figure 13 – sorted Failure Modes with all Mitigations active

Figure 14 – sorted Failure Modes with all but Software Quality Assurance Mitigations active




